nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
Merken Gemerkt
14.08.2019

Forscher zeigen: So sieht ein KI-Hirn aus

Fortschritte im Bereich der KI beruhen vor allem auf der Verwendung Neuronaler Netze. Vergleichbar mit der Funktionsweise des menschlichen Gehirns verknüpfen sie mathematisch definierte Einheiten miteinander. Doch bisher wusste man nicht, wie ein Neuronales Netz Entscheidungen trifft. Forschende des Fraunhofer Heinrich-Hertz-Instituts HHI und der Technischen Universität Berlin haben nun eine Technik entwickelt, die erkennt, anhand welcher Kriterien KI-Systeme Entscheidungen fällen.

Viele Unternehmen nutzen lernende und vernetzte KI-Systeme, etwa um präzise Nachfrageprognosen anzustellen und das Kundenverhalten exakt vorherzusagen. Auf diese Weise lassen sich beispielsweise Logistikprozesse regional anpassen.

Auch im Gesundheitswesen bedient man sich spezifischer KI-Tätigkeiten wie dem Anfertigen von Prognosen auf Basis von strukturierten Daten. Hier betrifft das etwa die Bilderkennung: So werden Röntgenbilder als Input in ein KI-System gegeben, der Output ist eine Diagnose.

Das Erfassen von Bildinhalten ist auch beim autonomen Fahren entscheidend, wo Verkehrszeichen, Bäume, Fußgänger und Radfahrer fehlerfrei erkannt werden müssen.

So lernen KI-Systeme

Und genau hier liegt die Crux: In sensiblen Anwendungsfeldern wie der medizinischen Diagnostik oder in sicherheitskritischen Bereichen müssen KI-Systeme absolut zuverlässige Problemlösungsstrategien liefern. Bislang war es jedoch nicht nachvollziehbar, wie KI-Systeme Entscheidungen treffen. Zudem basieren die Vorhersagen auf der Qualität der Input-Daten.

Mit der Layer-Wise Relevance Propagation (LRP) haben Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI, und der Technischen Universität Berlin nun eine Technik entwickelt, die KI-Prognosen erklärbar macht und somit unsichere Problemlösungsstrategien aufdeckt.

Die Weiterentwicklung der LRP-Technologie, die sogenannte Spectral Relevance Analysis (SpRAy) identifiziert und quantifiziert ein breites Spektrum erlernten Entscheidungsverhaltens und erkennt somit auch in riesigen Datensätzen unerwünschte Entscheidungen.

Transparente KI

In der Praxis identifiziert die Technik einzelne Input-Elemente, die für eine Vorhersage genutzt wurden. Wird also beispielsweise ein Gewebebild in ein KI-System eingegeben, so wird der Einfluss jedes Pixels auf das Klassifikationsergebnis quantifiziert. Die Vorhersage, wie "krebsartig" oder "nicht krebsartig" das Gewebebild ist, wird also mit der Angabe der Basis für diese Klassifikation ergänzt.

Bislang wurden KI-Systeme als Black Box angewendet. Man hat darauf vertraut, dass sie das richtige tun. Mit der Open-Source-Software, die die Layer-Wise Relevance Propagation einsetzt, ist es der Forschungsgruppe »Machine Learning« am Fraunhofer HHI gelungen, die Lösungsfindung von KI-Systemen nachvollziehbar zu machen.

Mit LRP werden Neuronale Netze visualisiert und interpretiert. LRP misst den Einfluss jeder Eingangsvariablen für die Gesamtvorhersage und zerlegt die Entscheidungen des Klassifizierers.

Unsichere Lösungsstrategien

Nur wer versteht, wie Neuronale Netze funktionieren, kann den Ergebnissen vertrauen. Dass KI-Systeme nicht immer sinnvolle Lösungswege finden, ergaben die Tests der Forscherteams.

Beispielsweise klassifizierte ein renommiertes KI-System Bilder anhand des Kontextes. Es ordnete Fotos der Kategorie Schiff zu, wenn viel Wasser im Bild zu sehen war. Die eigentliche Aufgabe, Schiffe zu erkennen, löste es nicht, auch wenn die Mehrzahl der Bilder korrekt identifiziert war..

Neuronale Netze beim Denken beobachten

Die LRP-Technologie entschlüsselt die Funktionsweise von Neuronalen Netzen, und findet heraus, anhand welcher Merkmale ein Pferd als Pferd identifiziert wird und nicht als Esel oder Kuh. An jedem Knotenpunkt des Netzes erkennt sie, wie Informationen durch das Netz fließen. Somit lassen sich sogar sehr tiefe Neuronale Netze untersuchen.

Derzeit erarbeiten die Forscherteams des Fraunhofer HHI und der TU Berlin neue Algorithmen, um weitere Fragestellungen zu untersuchen und KI-Systeme noch sicherer und robuster zu gestalten.

Redaktion QZ
qz <AT> hanser.de

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Weiterführende Information
DNV GL Business Assurance [Anzeige]

Kostenloser Download

  • 5 Schritte zu einem nachhaltigen Prozessmanagement

  • Prozessreifegrad Assessments

  • Self-Assessment BPM

Jetzt kostenlos downloaden!