nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
Merken Gemerkt
12.03.2019

Wie intelligent ist KI tatsächlich?

Lernalgorithmen scheinen der menschlichen Leistungsfähigkeit gleichgestellt oder sogar überlegen zu sein. Doch bislang bleibt meistens verborgen, wie KI-Systeme zu ihren Entscheidungen kommen. Damit bleibt oft auch unklar, ob es sich tatsächlich um intelligente Entscheidungen oder lediglich statistische Verfahren handelt.

Mit einem an der TU Berlin entwickelten Verfahren wurden nicht nur bestehende KI-Systeme auf die Probe gestellt, sondern diese Systeme auch quantifiziert: Vom naiven Problemlösungsverhalten, über Schummel-Strategien bis hin zu hochelaborierten „intelligenten“ strategischen Lösungsansätzen.

Dr. Wojciech Samek, Gruppenleiter am Fraunhofer HHI: „Wir waren sehr erstaunt über die große Bandbreite der gelernten Problemlösungsstrategien. Selbst moderne KI-Systeme haben nicht immer einen aus menschlicher Perspektive sinnvollen Lösungsweg gefunden, sondern nutzten bisweilen sogenannte ‚Clever-Hans-Strategien‘.“

Vorsicht vor dem "schlauen Hans"

Der Kluge Hans (Clever Hans) war ein Pferd, das angeblich rechnen und zählen konnte und in den Jahren um 1900 als wissenschaftliche Sensation galt. Wie sich später herausstellte, beherrschte Hans nicht die Mathematik, sondern konnte in etwa 90 Prozent der Fälle die richtige Antwort aus der Reaktion des Fragestellers ableiten.

Ähnliche „Clever Hans“-Lösungsstrategien konnten Klaus-Robert Müller und Wojciech Samek mit ihren Kollegen auch bei verschiedenen KI-Systemen finden. So verfolgte ein KI-System, das vor einigen Jahren mehrere internationale Wettbewerbe zur Klassifikation von Bildern gewonnen hat, eine aus menschlicher Sicht naive Lösungsstrategie: Es klassifizierte Bilder vorwiegend anhand des Kontextes. Dabei wurden Bilder der Kategorie „Schiff“ zugeordnet, wenn viel Wasser im Bild zu sehen war. Andere Bilder wurden als „Zug“ klassifiziert, wenn Schienen vorhanden waren. Wieder andere Bilder wurden anhand des Copyright-Schriftzuges der richtigen Kategorie zugeordnet.

Die eigentliche Aufgabe, nämlich Schiffe oder Züge zu erkennen, hat dieses KI-System nicht gelöst – auch wenn es die Mehrzahl der Bilder im Endeffekt korrekt klassifiziert hat.

"Dumme KI" ist gefährlich

Diese Art von fehlerhaften Lösungsstrategien fanden sich auch bei einigen der neuesten KI-Algorithmen, den sogenannten tiefen neuronalen Netzwerken. Diese stützen ihre Klassifikationsentscheidung zum Teil auf Artefakte, die während der Präparation der Bilder entstanden und mit dem eigentlichen Bildinhalt gar nichts zu tun haben.

„Solche KI-Systeme sind für den praktischen Einsatz völlig unbrauchbar. Ihr Einsatz in der medizinischen Diagnostik oder in sicherheitskritischen Bereichen birgt sogar enorme Gefahren“, weiß Klaus-Robert Müller: „Es ist durchaus denkbar, dass ungefähr die Hälfte der aktuell eingesetzten KI-Systeme implizit oder explizit solche ‚Clever Hans‘-Strategien nutzen. Es ist Zeit, das systematisch zu überprüfen, damit sichere KI-Systeme entwickelt werden können.“

Genaue Analyse lohnt

Forscher der Technischen Universität Berlin (TU Berlin), des Fraunhofer Heinrich-Hertz-Instituts (HHI) und der Singapore University of Technology and Design sind dieser Frage nachgegangen und haben in einer bei Nature Communications veröffentlichten Arbeit das ganze „Intelligenz“-Spektrum bestehender KI-Systeme mit einer speziellen, automatisierten Technologie analysiert und quantifiziert.

Wichtigste Voraussetzung für die neue Technologie ist eine von der TU Berlin und dem HHI entwickelte Technik, die sogenannte „Layer-wise Relevance Propagation“ (LRP), die sichtbar macht, aufgrund welcher Kriterien KI-Systeme Entscheidungen treffen. Die Weiterentwicklung der LRP-Technologie, die „Spectral Relevance Analysis“ (SpRAy), identifiziert und quantifiziert ein breites Spektrum erlernter Entscheidungsverhalten. So wird es möglich, auch in sehr großen Datensätzen unerwünschte Entscheidungen zu erkennen.

Redaktion QZ
qz <AT> hanser.de

TU Berlin
Nature Communications
DOI: 10.1038/s41467-019-08987-4

DNV GL Business Assurance [Anzeige]

Kostenloser Download

  • 5 Schritte zu einem nachhaltigen Prozessmanagement

  • Prozessreifegrad Assessments

  • Self-Assessment BPM

Jetzt kostenlos downloaden!